
Huffman coding and its generalizations

Dmitriy Kovalev
Novosibirsk State University

Russia
Email: dmitriy.kovalev@gmail.com

Sergey Krendelev
Novosibirsk State University

Russia
Email: tak@mail.nsk.ru

Abstract

In this paper we try to discuss the Huffman coding from our point of view. As a result of this
approach we came up with several interesting generalizations. We had also used the results of this
work to create and implement lossless video coding algorithm [1].

I. INTRODUCTION

Huffman method [2] is an essential part of any university course related to information
theory or data compression. Lections commonly begin with the formal definition of entropy,
prefix codes, binary trees and finally with optimal Huffman compression. Majority of students
only understand the formal side of all constructions without real understanding why the
entropy is a right measure for information, why prefix codes are used, and why this process
gives optimal representation.

II. MAIN PART

Consider alphabet A that consists of m elements a1, a2, . . . , am. Let An be a set of all
strings of length n formed with elements of A. It is obvious that A contains mn elements.
Suppose that S is a subset of An and contains p elements. Since S is finite, all its elements
can be numbered 0, 1, . . . p − 1, and then each such number can be represented in binary
numeral system. This binary representation requires H = log2 p bits of information. Value H
is called entropy, specifically the entropy of An is H = log2m

n = n log2m.
Typically the subset S can be distinguished from An by some conditions. A condition is

a mapping from An to the set with just two elements: true and false. Each string s ∈ An

that meets the condition P (s) forms a subset of An (subset can be empty). Hence, if P is a
condition, then set An is divided by it into two mutually exclusive subsets. The first subset
contains all strings s ∈ An when P (s) is true and the second contains all another strings
when P (s) is false.

Here are examples of some conditions:
P1: element a2 occurs in the string exactly 10 times.
P2: a7 is always followed by element a3.
P3: a1 and a7 do not occur in the string simultaneously.
P4: a12 occurs no more than 30 times.
Let’s suppose that some string meets conditions P1, P2, . . . , Pr. Suppose that the addressee

knows these conditions. How can we transmit this string? Theoretically, this can be done as
follows. First, search through all mn strings in some fixed order and check which strings
satisfy the conditions P1, P2, . . . , Pr. When we find a string that meets all the conditions, a
sequential number is assigned to that string. As a result we can assign a number to each string
from S that satisfies all of the above conditions and, thus, find the number of elements in
S. That way to transmit the string we only need to send the sequential number of the string



to our addressee, since our P1, P2, . . . , Pr conditions are known and, therefore, the original
string can be reconstructed by its number. In real situations it’s commonly required to send
all conditions P1, P2, . . . , Pr to the addressee along with the message, thus increasing its size.

Unfortunately this method is not applicable to real life situations since it uses enumeration
of all combinations. Thus, our task is to understand what conditions can be used to describe
all combinations relatively quickly.

Consider the following example. Suppose that some subset S ∈ An is defined by conditions:
P1: a1 occurs n1 times.
P2: a2 occurs n2 times.

. . .
Pm: am occurs nm times.
Then, n1 + n2 + . . .+ nm = n. In this case set S is a multiset and it contains

n!

n1!n2! . . . nm!

elements. This expression is a multinomial coefficient and it commonly written as(
n

n1, n2, . . . , nm

)
.

It means that the entropy of set S is

H = log2

n!

n1!n2! . . . nm!

and each element from this set can be represented as an integer number N :

0 ≤ N ≤
(

n
n1, n2, . . . , nm

)
− 1.

Multinomial coefficients has a useful property:(
n1 + n2 + . . .+ nm

n1, n2, . . . , nm

)
=

(
(n1 + n2 + . . .+ nk) + (nk+1 + . . .+ nm)
n1 + n2 + . . .+ nk, nk+1 + . . .+ nm

)
×

×
(
n1 + n2 + . . .+ nk

n1, n2, . . . , nk

)
×

(
nk+1 + . . .+ nm

nk+1, . . . , nm

)
Each multinomial coefficient can be interpreted as a number of strings with a given

length and with a given number of every element. In particular, the previous formula can
be interpreted as follows. The alphabet set is divided into two groups of elements, first group
contains all elements of alphabet with numbers 1, 2, . . . , k , and second group includes all
alphabet elements with numbers k + 1, . . . ,m. This partition can be represented as binary
string with length m. After that we can add two strings: the first contains k different elements
and its length is n1 + n2 + . . . + nk, the second contains m − k elements and its length is
nk+1 + . . .+nm. So, each element from the alphabet can be represented as a pair (i, j) where
i defines a group number and j defines the number of an element in group. This is nothing
other than prefix coding.

This observation allows us to make a generalization. Suppose that alphabet A is divided
into mutually exclusive subsets A0, A1, . . . , Ar, then the union of all these sets is A. Let’s
take any Ai and divide it again. We can do this process recursively until we get one-element
sets. After that each element of original alphabet can be represented as tuple a = (λ1, λ2, . . .)
where λ1 is the number of the first set from the fist partition that contains element a, λ2 is



the number of the second partition that contains element a, and so on. Evidentially, if the
partition is fixed, then each element of the alphabet is uniquely defined. This is what is called
prefix coding. If at every partition we would divide each set into two subsets, we would come
up with bit representation of each element of the alphabet.

It is useful to consider partition process as a tree where each root represents a subset of
alphabet. In that case, if at each step we divide a set in half, we will get a binary tree. Partition
into d parts will result in d-ary tree. The generalization of both cases is when we divide each
time into different number of parts.

Notice that approach of different set partition is very similar to an approach of representing
an integer number as a summation of integer numbers.

Thus, each set partition allows us to represent a multinomial coefficient as a set of multi-
pliers where each multiplier is also a multinomial coefficient:(

n1 + n2 + . . .+ nm

n1, n2, . . . , nm

)
= B0B1 . . . Br.

It is possible to create many set partitions, which is why the set of multipliers is not unique.
However, based on logarithm qualities, regardless of partition, the number of bits necessary
to represent the string will be the same.

Using our approach, number N can be represented in positional numeral system with the
mixed radix B0, B1, . . . , Br:

N = λ0 + λ1B0 + λ2B1B0 + . . .+ λr+1B0B1 . . . Br, 0 ≤ λk < Bk.

Each λk is mapped to some string s(λk). If we will use string representation, then each
element from the set S can be represented as sequence of strings s(λ0), s(λ1), . . . , s(λr+1).In
this case, s(λ0) is a string of length n that consists of first elements of a prefix code. All
other strings have similar meaning.

The described encoding method of all elements of S has its drawbacks. It is necessary to
remember the number of occurrences of each element of the alphabet (message statistics).
Another problem is that computation of λk is quite complex because of manipulations with
binomial coefficients. These are the reasons why enumeration encoding is rarely used.

The amount of computations can be reduced, but with a loss of coding efficiency. Let each
element of alphabet has be numbered 0, 1, . . . ,m − 1. Then each string of length n can be
represented as digits of a number from a numeral system with base m:

K = a0 + a1m+ a2m
2 + . . .+ an−1m

n−1.

It is obvious that K < mn and log2m
n = n log2m bits should be used to save any such

number. The minimal deviation between K and appropriate multinomial coefficient occurs
when n1 = n2 = . . . = nm.

The next construction is analogous to construction with binomial coefficients. First, we
need to create a set partition. Then each number B0, B1, . . . , Br should be replaced with the
appropriate power using the following rule:

Bk =
(
u1 + n2 + . . .+ us

u1, u2, . . . , us

)
↔ Dk = sh,

where the length of the string is h = u1 + u2 + . . . + us and s is a number of different
elements. All other reasonings remain true. In particular, each such string of length n can be
mapped to the number:

N = λ0 + λ1D0 + λ2D0D1 + . . .+ λr+1D0D1 . . . Dr, 0 ≤ λk < Dk.



III. CONCLUSION

From this it follows that for efficient representation of data it is necessary to use arbitrary
trees where each node can contain different number of children. Besides, there are statements
similar to Kraft-MacMillan inequality. Methods defined above can be also used for Markov
chain coding.

REFERENCES

[1] http://videosoft.org/codecs/fastcodec/
[2] D.A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes,” Proceedings of the I.R.E., pp. 1098–

1102, 1952.


